Die Zustandsüberwachung von Maschinen durch Techniker ist nicht neu. Die damit verbundenen Ziele auch nicht, nämlich die Optimierung der Gesamtanlagen-Effizienz und die Minimierung von Produktionsausfällen. Was sich geändert hat, ist die deutlich höhere Komplexität der Anlagen und die verfügbaren technischen Lösungen. Künstliche Intelligenz wird zum Game Changer für modernes Condition Monitoring. Im Folgenden zeigen wir, warum.
Das Internet der Dinge bringt immer mehr Herausforderungen mit sich. Techniker sehen sich mit zunehmender Maschinenkomplexität, kürzeren Entwicklungszyklen und einer hohen Produktvielfalt konfrontiert. Das Ergebnis? Es ist schwieriger denn je, den wahren Zustand ihrer Maschinen zu beurteilen.
Die datengesteuerte Zustandsüberwachung erkennt selbst minimale Veränderungen wie den oft schleichenden Verschleiß und zeigt sie frühzeitig an. Rechtzeitiges Handeln vermeidet so teure, ungeplante Ausfallzeiten. Beispielsweise kann der Defekt eines einfachen Kugellagers kann zu einem Produktionsstopp führen. Die Marktanalysten der Aberdeen Group beziffern die durchschnittlichen Stillstandskosten auf bis zu 260.000 US-Dollar pro Stunde – Kosten, die verhindert werden können.
Dabei geht es nicht nur darum, dem Techniker die Arbeit zu erleichtern. Das Wissen um die rechtzeitige Vermeidung solcher Ausfälle ist ein wertvoller neuer Service, den Maschinen- und Anlagenhersteller zusammen mit ihren Produkten anbieten können - eine "Gesundheitsgarantie" für ihre Maschinen. Für Fertigungsunternehmen liegt der Vorteil auf der Hand: Senkung der Ausfallzeiten, Erhöhung der Gesamtanlageneffektivität (OEE), um wettbewerbsfähig zu bleiben.
Bei der Zustandsüberwachung werden charakteristische Parameter Ihrer Maschine, z.B. Schwingungen oder Drehmomente, gemessen, um gefährliche Abweichungen zu erkennen. Fallende Kurven sind oft ein Hinweis auf beginnende Lagerschäden, die ein Techniker frühzeitig beheben kann, ohne die Produktion abrupt unterbrechen zu müssen.
Kommt Ihnen das bekannt vor? Das liegt wahrscheinlich daran, dass Sie es vielleicht schon tun. Viele Maschinen- und Anlagenbauer sowie produzierende Unternehmen implementieren seit langem Condition Monitoring mit Regelsystemen und statischen Schwellenwerten für z. B. Öltemperatur oder Schwingungsfrequenz. Das ist die traditionelle Zustandsüberwachung der alten Schule.
Diese Methode basiert auf statischen Mindest- oder Höchstgrenzen für ausgewählte Parameter. Sobald ein Grenzwert überschritten wird, wird ein Alarm ausgelöst, die Produktion wird gestoppt, und Techniker inspizieren die Maschine. Das funktioniert - aber nicht effizient. Sich auf statische Grenzwerte zu verlassen, führt oft zu Fehlalarmen, die die Produktion unterbrechen und die Kosten für Produktionsausfälle erhöhen, obwohl kein Fehler an einer Maschine vorliegt.
Andererseits kann ein überwachter Parameter auch trotz eines sich entwickelnden Fehlers innerhalb der Schwelle bleiben. Dieser Fehler bleibt unerkannt, bis die Maschine ohne Vorwarnung ausfällt und die Produktion unterbricht. Oft kommt in dieser Situation auch noch der Verschleiß anderer Komponenten hinzu. So verlängert sich die Ausfallzeit durch eine größere Reparatur.
In beiden Fällen enthält die traditionelle Zustandsüberwachung zu viele "Informationslücken" über Ihre Maschinen und Anlagen, um eine genaue Zustandsbewertung in Echtzeit zu ermöglichen.
Um die "falsch-positiven" oder "falsch-negativen" Meldungen zu vermeiden, benötigen Sie mehr Details über den aktuellen Zustand Ihrer Maschinen. Sie müssen verschiedene Parameter mit Sensoren messen und dann nach Mustern in diesen Daten suchen, um sich entwickelnde Fehler zu erkennen, bevor ein tatsächlicher Ausfall eintritt.
Die gute Nachricht ist, dass dies nun eine reale Möglichkeit ist. Die IoT-Welt hat zu einer Verbreitung von Maschinen geführt, die mit genügend Sensoren ausgestattet sind, um Daten zu erzeugen, die genau diese Nutzung ermöglichen. Sensoren generieren die benötigten Daten. Im Idealfall fließen diese Daten in Data Lakes, wo sie gespeichert und von Machine-Learning-Algorithmen analysiert werden.
Diese Algorithmen werden mit historischen Daten trainiert, um den Normalzustand der Maschine zu kennen, nicht nur punktuell, sondern über einen statistisch relevanten Zeitraum. Dies ist ein Normalmodell. Echtzeitdaten werden mit diesem Normalmodell verglichen und entsprechende Abweichungen von diesem "gesunden" Grundmuster erkannt, die auf einen möglichen Fehler hinweisen.
Der Einsatz von KI führt nicht nur zu weniger Fehlalarmen, sondern auch zu einer zuverlässigeren Erkennung von Abweichungen, die normalerweise keinen Alarm auslösen würden. Wenn eine Abweichung erkannt wird, nutzt der Techniker diese Information, um die notwendigen Maßnahmen zum richtigen Zeitpunkt zu planen und umzusetzen.
Sind Sie daran interessiert, Ihr eigenes KI-gestütztes Zustandsüberwachungsprogramm zu starten? Zunächst ist die Identifizierung eines geeigneten Anwendungsfalls ein wesentlicher Erfolgsfaktor für Ihr Condition-Monitoring-Programm. Dies erfordert eine enge Zusammenarbeit zwischen Experten und Datenwissenschaftlern.
Wenn diese Untersuchungen zeigen, dass der Informationsgehalt der Daten nicht ausreicht, müssen die Daten verbessert werden. Je nach Anwendungsfall kann dies durch die Verwendung zusätzlicher Datenquellen oder künstlich erzeugter Datenpunkte erfolgen. In manchen Fällen ist auch eine verbesserte, an den Anwendungsfall angepasste Sensorik oder die Extraktion der richtigen Daten aus der Sensorik erforderlich.
Durch die Definition eines sinnvollen Anwendungsfalls kann der Algorithmus - in der Regel eine Kombination von Algorithmen - die Daten auf der Suche nach Trends, Mustern und Korrelationen durchsuchen, um den Zustand einer Maschine genau anzuzeigen.
Es ist wichtig, diesen Anwendungsfall in Ihren Wertschöpfungsprozess zu integrieren. Dies wird oft unterschätzt und viel zu spät gemacht. Auch organisatorische Änderungen können notwendig sein.
Es wird Menschen geben, die ihre Komfortzone verlassen müssen, also sollten sie in diese neue Komfortzone begleitet und eingearbeitet werden. Oft betrifft dies die Vertriebsmitarbeiter eines Maschinenherstellers. Sie haben jahrelang Maschinen verkauft, aber von ihnen wird erwartet, dass sie Dienstleistungen verkaufen, die man gar nicht anfassen kann. Das ist ein großer Unterschied.
Condition Monitoring rechnet sich. Denn die KI-gestützte Zustandsüberwachung und
Diagnose in Echtzeit verfolgt zwei Ziele: Verlässlichkeit und Maschineneffizienz. Wenn Sie bereits mit Sensoren und vernetzten Geräten arbeiten, können Sie Ihren Datenschatz für messbare Geschäftserfolge nutzen. Das Potenzial ist riesig: Es geht um Produktivitätssteigerung, Kostentransparenz und -reduktion, neue Investitionsspielräume und Geschäftsmodelle. Es geht um Ihre Wettbewerbsfähigkeit.